Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

نویسندگان

  • Mona Zebarjadi
  • Keivan Esfarjani
  • Zhixi Bian
  • Ali Shakouri
چکیده

Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit.

An ideal thermoelectric material would be a semiconductor with high electrical conductivity and relatively low thermal conductivity: an "electron crystal, phonon glass". Introducing nanoscale heterostructures into the bulk TE matrix is one way of achieving this intuitively anomalous electron/phonon transport behavior. The heterostructured interfaces are expected to play a significant role in ph...

متن کامل

Calculation of Nonlinear Thermoelectric Coefficients of InAs1 xSbx Using Monte Carlo Method

It was found that the nonlinear Peltier effect could take place and increase the cooling power density when a lightly doped thermoelectric material is under a large electrical field. This effect is due to the Seebeck coefficient enhancement from an electron distribution far from equilibrium. In the nonequilibrium transport regime, the solution of the Boltzmann transport equation in the relaxati...

متن کامل

Enhancing the thermoelectric power factor by using invisible dopants.

Nanoparticle dopants that are invisible to conduction electrons and have sharp dips in their electron scattering rate versus electron energy close to the Fermi level. Replacement of such dopants with traditional impurities results in simultaneous enhancement of the Seebeck coefficient and the electron mobility and therefore a large enhancement in the thermoelectric power factor can be achieved.

متن کامل

Thermoelectric transport in strained Si and Si/Ge heterostructures.

The anisotropic thermoelectric transport properties of bulk silicon strained in the [111]-direction were studied by detailed first-principles calculations focusing on a possible enhancement of the power factor. Electron and hole doping were examined in a broad doping and temperature range. At low temperature and low doping an enhancement of the power factor was obtained for compressive and tens...

متن کامل

تأثیر آلاینده خنثای Ca-La بر روی خواص ترابردی و ابررسانایی ترکیب 123-Nd

 Polycrystalline samples of Nd1-xCaxBa2-xLaxCu3O7-δ (with 0.0 ≤ x ≤ 0.15) were prepared by the standard solid state method. The transport and superconducting properties have been studied by the resistivity and thermoelectric power measurements as a function of temperature and doping concentration. With increasing doping concentration, the resistivity was increased and thermoelectric power was c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2011